

NSF-CREST Center for Cellular and Biomolecular Machines

UNIVERSITY OF CALIFORNIA MERCED

The CREST Center for Cellular and Biomolecular Machines (CCBM) at the University of California, Merced uses an interdisciplinary approach combining physical, biological and engineering methods to understand and control the functioning of multi-scale assemblies of biomolecules and cells and to design and develop novel bio-inspired functioning machines ranging from designer cells and tissue to diagnostic and therapeutic devices.

GRADUATE AND UNDERGRADUATE FELLOWS OF THE CENTER WILL BE ABLE TO TAKE ADVANTAGE OF:

- > an interdisciplinary graduate training emphasis in Interdisciplinary Biophysical Sciences, Biomaterials and Biotechnology (IB3)
- > training modules in nanobio fabrication, imaging and spectroscopy, and computation and modeling
- > participation in all center activities including networking and professional development opportunities, center meetings and events, career skills workshops and more
- > entrepreneurship and K-12 school outreach opportunities
- > generous academic year and summer stipends, travel fellowships and more

THRUST 1: PROTEIN METAMORPHOSIS AND RESPONSIVE NANODEVICES

Phase II research focuses on the emerging theme of protein metamorphosis as mechanism to enable natural and synthetic controllable biological nanodevices, organized in two broad areas: the functional roles of gradually morphing proteins; and engineering of control systems of the assembly-disassembly of biological macromolecular assemblies.

THRUST 2: ADAPTIVE AND RESPONSIVE MESOSCALE ASSEMBLIES

In Phase II, the focus is to understand the mechanisms that enable assemblies to function collectively in adaptive and responsive ways as well as exploiting them for applications.

THRUST 3: ADAPTIVE CELLULAR COMMUNICATION

Phase II will examine the impact of cell-cell and cell-matrix mechanical interactions on collective cell motility, patterning and the emergence of function, combining experimental and modeling approaches.

University of California, Merced | 5200 N. Lake Road | Merced, CA 95343

ccbm.ucmerced.edu

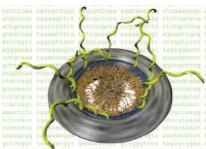
CONTACT

GRADUATE INQUIRIESAJAY GOPINATHAN

EMAIL: agopinathan@ucmerced.edu

UNDERGRADUATE INQUIRIES
ROBERTO ANDRESEN EGUILUZ

EMAIL: randreseneguiluz@ucmerced.edu


GENERAL INQUIRIES
CARRIE KOUADIO

EMAIL: ckouadio@ucmerced.edu

UNIVERSITY OF CALIFORNIA MERCED

Faculty

CENTER FOR CELLULAR AND BIOMOLECULAR MACHINES

ROBERTO C. ANDRESEN EGUILUZ, *materials science and engineering* cell and extracellular matrix mechanobiology, bioadhesion, biolubrication

RYAN BAXTER, chemistry

single electron transfers, electro-responsive organic materials, synthetic methods and real-time reaction monitoring

MIKE COLVIN, chemistry and chemical biology

models of biological processes and molecular dynamics of disordered proteins

KINJAL DASBISWAS, physics

theoretical biological physics, cell and tissue mechanics, biomaterials

EVA DE ALBA, bioengineering

protein engineering, structure, function and assembly; specific focus on inflammation and cell death; NMR, electron microscopy, optical traps

XUECAI GE, molecular and cell biology

neurodevelopment, cell signaling, primary cilia, developmental disorders

SAYANTANI GHOSH, physics

experimental condensed matter physics, magnetism, metamaterials, nanoscience and quantum systems

ARVIND GOPINATH, mechanical engineering

fluid dynamics, polymers and active soft matter - theory and simulations

AJAY GOPINATHAN, (co-director), physics

theoretical biophysics, biopolymers, transport and collective behavior

AARON D. HERNDAY, molecular cell biology

 $molecular\ genetics,\ transcriptional\ networks,\ microbial\ epigenetics,\ genetic\ engineering,\ synthetic\ biology$

LINDA HIRST, physics

experimental soft matter physics and biophysics

BIN LIU, physics

bacterial motility in complex media and single-cell behavior in biological processes

ANDY LIWANG, chemistry and chemical biology

structural biology of circadian clock proteins and nucleic acids, NMR spectroscopy

PATRICIA LIWANG, molecular cell biology

HIV inhibition, protein-protein interactions, anti-inflammatory strategies, NMR, silk fibroin drug delivery

KARA E. MCCLOSKEY. materials science and engineering

stem cell and tissue engineering for regenerative medicine applications

ANDREA MERG, chemistry and biochemistry

biomolecular self-assembly, nanomaterial design and synthesis, nanotechnology, biomaterials

KEVIN MITCHELL, physics

theoretical nonlinear dynamics, chaotic transport, atomic and molecular physics, fluids

VICTOR MUÑOZ, (co-director), bioengineering

protein folding, structure prediction and design, protein aggregation

TOMAS RUBE, bioengineering

computational biology, regulatory genomics, biophysics

JOEL A. SPENCER, bioengineering

biomedical optics, intravital imaging and sensing, tissue regeneration and transplantation

ANAND BALA SUBRAMANIAM, bioengineering

experimental biophysics, cellular reconstitution, experimental synthetic biology

SUZANNE SINDI, applied mathematics

mathematical biology, dynamical systems, computational biology

SHAHAR SUKENIK, chemistry and chemical biology

experimental biophysics; protein structure, function, and interaction in the cellular environment

MAXIME THEILLARD, applied mathematics

computational biomechanic, high performance computing, continuum modeling

MICHAEL C. THOMPSON, chemistry

structural biology, biophysics, protein dynamics, enzymology

FRED W WOLF, molecular and cell biology

neurobiology of behavior, addiction, protein translation

STEPHANIE WOO, molecular cell biology

developmental biology, morphogenesis, cytoskeletal dynamics, gut development, epithelial development

TAO YE, chemistry and chemical biology

biomolecular science and engineering, nanotechnology